Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification
نویسنده
چکیده
Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification by Justin Gregory Winokur Department of Mechanical Engineering & Materials Science Duke University Date: Approved: Omar M. Knio, Supervisor
منابع مشابه
Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos
Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general pro...
متن کاملAdaptive Polynomial Chaos Techniques for Uncertainty Quantification of a Gas Cooled Fast Reactor Transient
Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing hig...
متن کاملDesign under Uncertainty Employing Stochastic Expansion Methods
Nonintrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification due to their fast convergence properties and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampli...
متن کاملSparse multiresolution stochastic approximation for uncertainty quantification
Most physical systems are inevitably affected by uncertainties due to natural variabili-ties or incomplete knowledge about their governing laws. To achieve predictive computer simulations of such systems, a major task is, therefore, to study the impact of these uncertainties on response quantities of interest. Within the probabilistic framework, uncertainties may be represented in the form of r...
متن کاملComparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sa...
متن کامل